Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 18(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33291086

RESUMO

Objective.Robotic rehabilitation systems have been investigated to assist with motor dysfunction recovery in patients with lower-extremity paralysis caused by central nervous system lesions. These systems are intended to provide appropriate sensory feedback associated with locomotion. Appropriate feedback is thought to cause synchronous neuron firing, resulting in the recovery of function.Approach.In this study, we designed and evaluated an ergometric cycling wheelchair, with a brain-machine interface (BMI), that can force the legs to move by including normal stepping speeds and quick responses. Experiments were conducted in five healthy subjects and one patient with spinal cord injury (SCI), who experienced the complete paralysis of the lower limbs. Event-related desynchronization in theßband (18-28 Hz) was used to detect lower-limb motor images.Main results.An ergometer-based BMI system was able to safely and easily force patients to perform leg movements, at a rate of approximately 1.6 s/step (19 rpm), with an online accuracy rate of 73.1% for the SCI participant. Mean detection time from the cue to pedaling onset was 0.83±0.31 s.Significance.This system can easily and safely maintain a normal walking speed during the experiment and be designed to accommodate the expected delay between the intentional onset and physical movement, to achieve rehabilitation effects for each participant. Similar BMI systems, implemented with rehabilitation systems, may be applicable to a wide range of patients.


Assuntos
Interfaces Cérebro-Computador , Traumatismos da Medula Espinal , Encéfalo , Humanos , Locomoção , Paraplegia/etiologia , Paraplegia/reabilitação
2.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825762

RESUMO

Various dry electroencephalography (EEG) electrodes have been developed. Dry EEG electrodes need to be pressed onto the scalp; therefore, there is a tradeoff between keeping the contact impedance low and maintaining comfort. We propose an approach to solve this tradeoff through the printing of complex-shaped electrodes by using a stereolithography 3D printer. To show the feasibility of our approach, we fabricated electrodes that have flexible fingers (prongs) with springs. Although dry electrodes with flexible prongs have been proposed, a suitable spring constant has not been obtained. In this study, the spring constant of our electrodes was determined from a contact model between the electrodes and the scalp. The mechanical properties and reproductivity of the electrodes were found to be sufficient. Finally, we measured the alpha waves when a participant opened/closed his eyes by using our electrodes.


Assuntos
Eletrodos , Eletroencefalografia/instrumentação , Couro Cabeludo , Impedância Elétrica , Humanos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...